大师为大家整理了人教版七年级上册知识内容,以帮助同学们做好预习,开学后顺利进入常规数学学习.
另外,准高三也可以作为复习资料,可以在暑假复习,为中考打下坚实的基础!
第一章 有理数
1.1 正数与负数
正数:大于0的数称为正数。(有时根据需要在正数前面加“.”
负数:之前学过的除0以外的数字前面带负号“―”的数字称为负数。与正数意义相反。
0既不是正的也不是负的。0是正数和负数的界限,是唯一的中性数。
注意相反意义的量:南北;物;上下;左右;起起落落;高低;减少等。
1.2 有理数
1.有理数
(1)整数:正整数,0和负整数统称为整数;(2)分数;正负分数统称为分数;(3)有理数:整数和分数统称为有理数。
2.计数轴
(1)定义:数字通常用直线上的点来表示,称为数轴;
(2)计数轴三要素:原点、正方向、单位长度;
(3)原点:直线上的任意一点都代表数字0,这个点叫做原点;
(4)数轴上的点与有理数的关系:所有有理数都可以用数轴上的点来表示,但不是数轴上的所有点都代表有理数。
3.反数
只有两个符号不同的数是相反的。(如果2的倒数是-2,0的倒数是0)
4.绝对值
(1)数轴上代表数A的点与原点的距离称为数A的绝对值,记为|a|。在几何意义上,一个数的绝对值就是两点之间的距离。
(2)正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。两个负数,较大的绝对值较小。
1.3 有理数的加减法
有理数加法法则:
1.将两个符号相同的数字相加,取相同的符号,然后将绝对值相加。
2.将两个绝对值不同的数相加,取绝对值较大的加数的符号,从绝对值较大的数中减去绝对值较小的数。将两个相反的数字相加得到0。
3.把一个数加到0上,还是得到这个数。
交换律和加法结合律。
有理数减法定律:减去一个数等于加上这个数的相反数。
1.4 有理数的乘除法
有理数的乘法法则:两个数相乘,同号为正,异号为负,绝对值相乘;任何数字乘以0都是0。
乘积为1的两个数互为倒数。
乘法和交换定律,组合定律和分配定律。
有理数除法法则:
除以一个不等于0的数等于乘以这个数的倒数;
两个数相除,同号为正,异号为负,并除以绝对值;
用0除以任何不等于0的数,得到0。
1.5 有理数的乘方
1.求n个恒等因子的乘积的运算叫做幂,幂的结果叫做幂。在a的n次方中,a称为底数,n称为指数。负数的奇次方为负,负数的偶次方为正。正数的任意次方为正,0的任意次方为0。
2.有理数的混合算法:先乘后乘再除,最后加减;同级操作,从左至右;如果有括号,先做括号内的运算,按照括号、中括号、大括号依次进行。
3.使用科学记数法,大于10的数字表示为a10的n次方。注意a的范围是1a10。
第二章 整式的加减
2.1 整式
1.单调的
由数字和字母的乘积组成的公式。系数,单项的次数。单项式是指数字或字母的乘积的代数表达式。单个数字或字母也是单项式。所以,判断一个代数表达式是否是单项式的关键,要看代数表达式中的数字和字母是否是乘积关系,即分母不含字母,如果公式中含有加减项,就不是单项式。
2、该
几个单项式的和。代数表达式是否是多项式,取决于代数表达式中的每一项是否是单项式。每个单项式、常数项和多项式的次数都是多项式中的最高次数。多项式的次数是指多项式中最高项的次数,这里是最高项,其次数为6;多项式的项是指多项式中的每一项。请特别注意,多项式的项前面包含属性符号。
5.都是用字母表示数字或者用列表示数量关系。请注意,单项式和多项式的每一项前面都包含符号。
6.单调和多项式统称为代数表达式。
2.2整式的加减
1.类似项目
具有相同字母和相同字母索引的项目。
。与字母前面的系数(不等于0)无关。
2、同类项必须同时满足两个条件
(1)所含字母相同;(2)相同字母的指数相同。二者缺一不可.
同类项与系数大小、字母的排列顺序无关。
3、合并同类项
把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
4、合并同类项法则
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
5、去括号法则
去括号,看符号:是正号,不变号;是负号,全变号。
6、整式加减的一般步骤:一去、二找、三合
(1)如果遇到括号按去括号法则先去括号. (2)结合同类项. (3)合并同类项。
第三章 一元一次方程
3.1 一元一次方程
1、方程是含有未知数的等式。
2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
注意:判断一个方程是否是一元一次方程要抓住三点:
(1)未知数所在的式子是整式(方程是整式方程);
(2)化简后方程中只含有一个未知数;
(3)经整理后方程中未知数的次数是1.
3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
4、等式的性质
(1)等式两边同时加(或减)同一个数(或式子),结果仍相等;
(2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.
3.2 、3.3解一元一次方程
在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用. 因此在解方程时还要注意以下几点:
①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;
②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;
③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号;
④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写成连等的形式;
⑤系数化为1:字母及其指数不变,系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要把分子、分母搞颠倒。
3.4 实际问题与一元一次方程
一.概念梳理
列一元一次方程解决实际问题的一般步骤是:
①审题,特别注意关键的字和词的意义,弄清相关数量关系;
②设出未知数(注意单位);
③根据相等关系列出方程;
④解这个方程;
⑤检验并写出答案(包括单位名称)。
二、思想方法(本单元常用到的数学思想方法小结)
⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.
⑵方程思想:用方程解决实际问题的思想就是方程思想.
⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.
⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.
⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.
三、数学思想方法的学习
1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.
2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.
3. 列方程解应用题的检验包括两个方面:
⑴检验求得的结果是不是方程的解;
⑵是要判断方程的解是否符合题目中的实际意义.
四、应用(常见等量关系)
行程问题:s=v×t
工程问题:工作总量=工作效率×时间
盈亏问题:利润=售价-成本
利率率=利润÷成本×100%
售价=标价×折扣数×10%
储蓄利润问题:利息=本金×利率×时间
本息和=本金+利息
第四章 几何图形初步
4.1 几何图形
1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
2、立体图形:这些几何图形的各部分不都在同一个平面内。
3、平面图形:这些几何图形的各部分都在同一个平面内。
4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。立体图形中某些部分是平面图形。
5、三视图:从左面看,从正面看,从上面看。
6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。这样的平面图形称为相应立体图形的展开图。
7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;
⑵点无大小,线、面有曲直;
⑶几何图形都是由点、线、面、体组成的;
⑷点动成线,线动成面,面动成体;
⑸点是组成几何图形的基本元素。
4.2 直线、射线、线段
1、直线公理:经过两点有一条直线,并且只有一条直线。即:两点确定一条直线。
2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。
4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
5、连接两点间的线段的长度,叫做这两点的距离。
6、直线的表示方法:直线可记作直线AB或记作直线m.
(1)用几何语言描述右面的图形,我们可以说:点P在直线AB外,点A、B都在直线AB上.
(2)点O既在直线m上,又在直线n上,我们称直线m、n 相交,交点为O.
7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,记作射线OM或记作射线a.
注意:射线有一个端点,向一方无限延伸.
8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.记作线段AB或记作线段a.
注意:线段有两个端点.
4.3 角
1. 角的定义:有公共端点的两条射线组成的图形叫角。这个公共端点是角的顶点,两条射线为角的两边。
2、角有以下的表示方法:
① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.
② 用一个大写字母表示.这个字母就是顶点.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示.
③ 用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠α、∠1。
3、以度、分、秒为单位的角的度量制,叫做角度制。角的度、分、秒是60进制的。1度=60分,1分=60秒,1周角=360度,1平角=180度。
4、角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。
5、如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;
如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。
6、同角(等角)的补角相等;同角(等角)的余角相等。
7、方位角:一般以正南正北为基准,描述物体运动的方向。